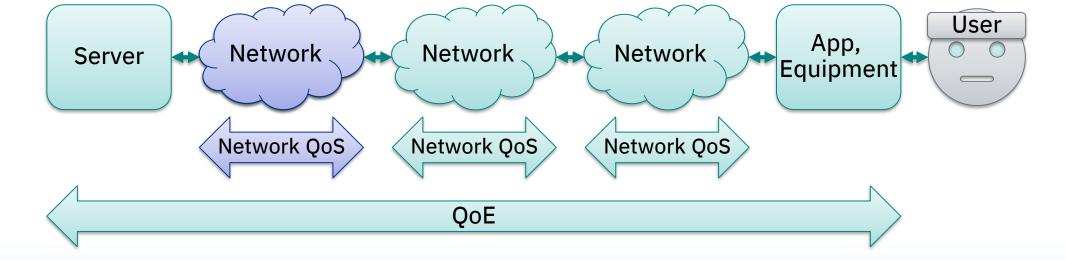

Estimating Customer QoE from Network Metrics

QoS to QoE

Kenneth Nagin, Andre Kasiss, **Dean Lorenz** Kathy Barabash, Eran Raichstein

IBM **Israel** Celebrating 70 Years of Progress



© 2019 IBM Corporation

QoE – Quality of Experience

Measure of User Satisfaction

- □ User centric, service specific, context dependent
- Measured with end-user feedback
- □ An end-to-end metric
 - Network QoS is only part of the story

Example: SliceNet eHealth Use-Case

□ Use Case:

 Paramedic streams live HD video feed from ambulance to hospital

5G Network Slice

 Hospital personnel advise paramedics on actions to take

□ QoE:

- Quality of video experience
- May be influenced by:
 - Scenario, e.g., conf call vs. diagnosis
 - Equipment, e.g., size/quality of screen
 - Mobility, weather, eyesight, time-to-live

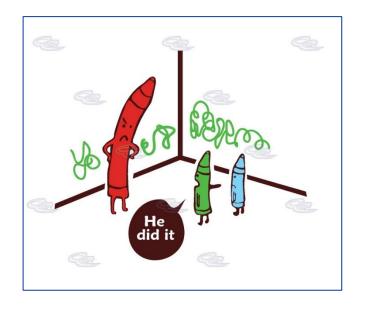
Take the blue pill

Why Estimate QoE?

□ Meet SLA

- Minimize QoS without degrading QoE (save \$)
 - SLA usually defined by QoS

□ Exceed SLA to achieve QoE


- Compensate for poor QoS by other components
 - Think Earliest-Due-Date (EDD) scheduling
- Can be value add, pay-per-use, best-effort

Shift blame if something goes wrong

- Log proof of QoS (audit) when QoE is poor
- Collect more info

Notify service owner

- Throttle / apologize to users / degrade gracefully
- Change service parameters, mask degradation

Problem Definition: QoS → QoE

□ Input: measured QoS

- Metrics, any available indicators
- Partial view
- □ <u>Output</u>: estimated QoE

□ Follow-up question: where is the problem?

- Network provider perspective:
 - Network problem $\rightarrow fix$
 - Not network problem \rightarrow *notify*
- Service provider perspective:
 - Network problem \rightarrow complain
 - Service problem \rightarrow *fix*
 - Other \rightarrow *notify*

5

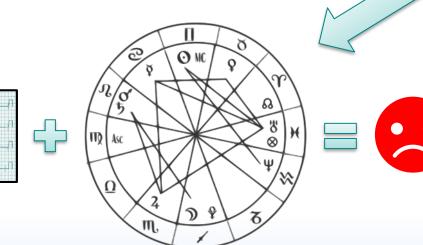
		P		/			
ilows v							
Арр. 🔨	Α	В	AB Pkts	BA Pkts	AB Bytes	BA Bytes	RTT ms
DNS	10.186.164.173	10.0.80.11	1	1	82	98	0.512
DNS	10.186.164.173	10.0.80.11	1	1	82	98	0.521
DNS	10.186.164.173	10.0.80.11	1	1	82	98	0.417

10.186.164.173

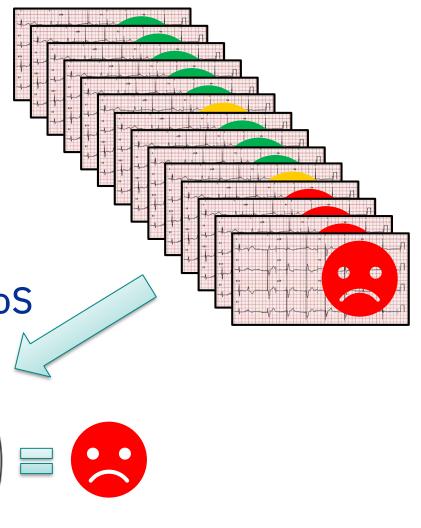
Can you guess the QoE?

IBM Israe

0 48


Celebrating 70

Solution Outline: Machine Learning Approach


Other approaches apply too

Model Training:

- Measured QoS
- QoE labels
- Dutput: QoE Estimator
- □ <u>Usage</u>: apply model on measured QoS

Validation: Actual QoE vs. Estimation

Missed Estimations

QoE Score

Thank you!

Dean Lorenz IBM Research – Haifa dean@il.ibm.com

https://www.research.ibm.com/haifa/dept/stt/cloud_sys.shtml

